CHSU Discovery

Targeting the YAP-TEAD interaction interface for therapeutic intervention in glioblastoma.

Journal of neuro-oncology Peer reviewed publication
volume 152 issue 2 pages 217-231
April 2021
DOI: 10.1007/s11060-021-03699-6 PMID: 33511508
EISSN: 1573-7373 ISSN: 0167-594X KBID: 2880 LN: Kumar CHSU: Faculty

Repository

Description

INTRODUCTION

Recent studies have suggested that dysregulated Hippo pathway signaling may contribute to glioblastoma proliferation and invasive characteristics. The downstream effector of the pathway, the Yes-associated protein (YAP) oncoprotein, has emerged as a promising target in glioblastoma multiforme (GBM).

METHODS

Utilizing a high-throughput yeast two-hybrid based screen, a small molecule was identified which inhibits the association of the co-transcriptional activator YAP1 and the TEA domain family member 1 (TEAD1) transcription factor protein-protein interaction interface. This candidate inhibitor, NSC682769, a novel benzazepine compound, was evaluated for its ability to affect Hippo/YAP axis signaling and potential anti-glioblastoma properties.

RESULTS

NSC682769 potently blocked association of YAP and TEAD in vitro and in GBM cells treated with submicromolar concentrations. Moreover, inhibitor-coupled bead pull down and surface plasmon resonance analyses demonstrate that NSC682769 binds to YAP. NSC682769 treatment of GBM lines and patient derived cells resulted in downregulation of YAP expression levels resulting in curtailed YAP-TEAD transcriptional activity. In GBM cell models, NSC682769 inhibited proliferation, colony formation, migration, invasiveness and enhanced apoptosis. In tumor xenograft and genetically engineered mouse models, NSC682769 exhibited marked anti-tumor responses and resulted in increased overall survival and displayed significant blood-brain barrier penetration.

CONCLUSIONS

These results demonstrate that blockade of YAP-TEAD association is a viable therapeutic strategy for glioblastoma. On the basis of these favorable preclinical studies further clinical studies are warranted.

Show Full Abstract Collapse Abstract

Affiliations

  1. Department of Medicine, University of California, Los Angeles, CA, USA
  2. Department of Neurology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
  3. Department of Pharmaceutical and Biomedical Sciences, California Health Sciences University, Clovis, CA, USA
  4. Department of Research & Development, Greater Los Angeles Veterans Affairs Healthcare System, 16111 Plummer Street (151), Building 1, Room C111A, Los Angeles, CA 91343, USA
  5. Jonnson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
  6. Molecular Biology Institute, University of California, Los Angeles, CA, USA

Publisher

Springer Nature (United States)

Languages

English

Citations

  • Cloughesy TF, Cavenee WK, Mischel PS (2014) Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol 9:1–25. https://doi.org/10.1146/annurev-pathol-011110-130324
  • Wang Y, Xu X, Maglic D, Dill MT, Mojumdar K, Ng PK, Jeong KJ, Tsang YH, Moreno D, Bhavana VH, Peng X, Ge Z, Chen H, Li J, Chen Z, Zhang H, Han L, Du D, Creighton CJ, Mills GB, Cancer Genome Atlas Research N, Camargo F, Liang H (2018) Comprehensive molecular characterization of the hippo signaling pathway in cancer. Cell Rep 25(1304–1317):e1305. https://doi.org/10.1016/j.celrep.2018.10.001
  • Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30:1–17. https://doi.org/10.1101/gad.274027.115
  • Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL, Kim SH, Turski A, Azodi Y, Yang Y, Doucette T, Colman H, Sulman EP, Lang FF, Rao G, Copray S, Vaillant BD, Aldape KD (2011) The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev 25:2594–2609. https://doi.org/10.1101/gad.176800.111
  • Orr BA, Bai H, Odia Y, Jain D, Anders RA, Eberhart CG (2011) Yes-associated protein 1 is widely expressed in human brain tumors and promotes glioblastoma growth. J Neuropathol Exp Neurol 70:568–577. https://doi.org/10.1097/NEN.0b013e31821ff8d8
  • Liu M, Lin Y, Zhang XC, Tan YH, Yao YL, Tan J, Zhang X, Cui YH, Liu X, Wang Y, Bian XW (2017) Phosphorylated mTOR and YAP serve as prognostic markers and therapeutic targets in gliomas. Lab Invest 97:1354–1363. https://doi.org/10.1038/labinvest.2017.70
  • Zhang H, Geng D, Gao J, Qi Y, Shi Y, Wang Y, Jiang Y, Zhang Y, Fu J, Dong Y, Gao S, Yu R, Zhou X (2016) Expression and significance of Hippo/YAP signaling in glioma progression. Tumour Biol. https://doi.org/10.1007/s13277-016-5318-1
  • Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163:811–828. https://doi.org/10.1016/j.cell.2015.10.044
  • Yu J, Zheng Y, Dong J, Klusza S, Deng WM, Pan D (2010) Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded. Dev Cell 18:288–299. https://doi.org/10.1016/j.devcel.2009.12.012
  • Zhao B, Li L, Tumaneng K, Wang CY, Guan KL (2010) A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev 24:72–85. https://doi.org/10.1101/gad.1843810
  • Totaro A, Panciera T, Piccolo S (2018) YAP/TAZ upstream signals and downstream responses. Nat Cell Biol 20:888–899. https://doi.org/10.1038/s41556-018-0142-z
  • Mauviel A, Nallet-Staub F, Varelas X (2012) Integrating developmental signals: a Hippo in the (path)way. Oncogene 31:1743–1756. https://doi.org/10.1038/onc.2011.363
  • Piccolo S, Cordenonsi M, Dupont S (2013) Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 19:4925–4930. https://doi.org/10.1158/1078-0432.CCR-12-3172
  • Hong W, Guan KL (2012) The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin Cell Dev Biol 23:785–793. https://doi.org/10.1016/j.semcdb.2012.05.004
  • Yu FX, Guan KL (2013) The Hippo pathway: regulators and regulations. Genes Dev 27:355–371. https://doi.org/10.1101/gad.210773.112
  • Bum-Erdene K, Zhou D, Gonzalez-Gutierrez G, Ghozayel MK, Si Y, Xu D, Shannon HE, Bailey BJ, Corson TW, Pollok KE, Wells CD, Meroueh SO (2019) Small-molecule covalent modification of conserved cysteine leads to allosteric inhibition of the TEADYap protein–protein interaction. Cell Chem Biol 26:378-389 e313. https://doi.org/10.1016/j.chembiol.2018.11.010
  • Liu-Chittenden Y, Huang B, Shim JS, Chen Q, Lee SJ, Anders RA, Liu JO, Pan D (2012) Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP. Genes Dev 26:1300–1305. https://doi.org/10.1101/gad.192856.112
  • Basu D, Lettan R, Damodaran K, Strellec S, Reyes-Mugica M, Rebbaa A (2014) Identification, mechanism of action, and antitumor activity of a small molecule inhibitor of hippo, TGF-beta, and Wnt signaling pathways. Mol Cancer Ther 13:1457–1467. https://doi.org/10.1158/1535-7163.MCT-13-0918
  • Yu FX, Zhao B, Panupinthu N, Jewell JL, Lian I, Wang LH, Zhao J, Yuan H, Tumaneng K, Li H, Fu XD, Mills GB, Guan KL (2012) Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150:780–791. https://doi.org/10.1016/j.cell.2012.06.037
  • Yu FX, Zhang Y, Park HW, Jewell JL, Chen Q, Deng Y, Pan D, Taylor SS, Lai ZC, Guan KL (2013) Protein kinase A activates the Hippo pathway to modulate cell proliferation and differentiation. Genes Dev 27:1223–1232. https://doi.org/10.1101/gad.219402.113
  • Oku Y, Nishiya N, Shito T, Yamamoto R, Yamamoto Y, Oyama C, Uehara Y (2015) Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio 5:542–549. https://doi.org/10.1016/j.fob.2015.06.007
  • Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S, Manfrin A, Ingallina E, Sommaggio R, Piazza S, Rosato A, Piccolo S, Del Sal G (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16:357–366. https://doi.org/10.1038/ncb2936
  • Gibault F, Sturbaut M, Bailly F, Melnyk P, Cotelle P (2018) Targeting transcriptional enhanced associate domains (TEADs). J Med Chem 61:5057–5072. https://doi.org/10.1021/acs.jmedchem.7b00879
  • Zhou Z, Hu T, Xu Z, Lin Z, Zhang Z, Feng T, Zhu L, Rong Y, Shen H, Luk JM, Zhang X, Qin N (2015) Targeting Hippo pathway by specific interruption of YAP-TEAD interaction using cyclic YAP-like peptides. FASEB J 29:724–732. https://doi.org/10.1096/fj.14-262980
  • Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X, He F, Wang Y, Zhang Z, Wang W, Wang X, Guo T, Li P, Zhao Y, Ji H, Zhang L, Zhou Z (2014) A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 25:166–180. https://doi.org/10.1016/j.ccr.2014.01.010
  • Crook ZR, Sevilla GP, Friend D, Brusniak MY, Bandaranayake AD, Clarke M, Gewe M, Mhyre AJ, Baker D, Strong RK, Bradley P, Olson JM (2017) Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nat Commun 8:2244. https://doi.org/10.1038/s41467-017-02098-8
  • Barth MC, Montalbetti S, Spitzer C, L (2017) (s), Preparation of New 4-[(E)-[(1,1-dioxo-1,2-benzothiazol- 3-yl)hydrazono]methyl]-2-methoxyphenols as inhibitors of the YAP/TAZ-TEAD interaction and their use in the treatment of malignant mesothelioma.. PCT Int. Appl. WO 2017064277 A1, Inventiva
  • Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A (2015) Targeting the central pocket in human transcription factor TEAD as a potential cancer therapeutic strategy. Structure 23:2076–2086. https://doi.org/10.1016/j.str.2015.09.009
  • Lu W, Wang J, Li Y, Tao H, Xiong H, Lian F, Gao J, Ma H, Lu T, Zhang D, Ye X, Ding H, Yue L, Zhang Y, Tang H, Zhang N, Yang Y, Jiang H, Chen K, Zhou B, Luo C (2019) Discovery and biological evaluation of vinylsulfonamide derivatives as highly potent, covalent TEAD autopalmitoylation inhibitors. Eur J Med Chem 184:111767. https://doi.org/10.1016/j.ejmech.2019.111767
  • Song S, Xie M, Scott AW, Jin J, Ma L, Dong X, Skinner HD, Johnson RL, Ding S, Ajani JA (2018) A Novel YAP1 inhibitor targets CSC-enriched radiation-resistant cells and exerts strong antitumor activity in esophageal adenocarcinoma. Mol Cancer Ther 17:443–454. https://doi.org/10.1158/1535-7163.MCT-17-0560
  • Gibault F, Coevoet M, Sturbaut M, Farce A, Renault N, Allemand F, Guichou JF, Drucbert AS, Foulon C, Magnez R, Thuru X, Corvaisier M, Huet G, Chavatte P, Melnyk P, Bailly F, Cotelle P (2018) Toward the discovery of a novel class of YAP(-)TEAD interaction inhibitors by virtual screening approach targeting YAP(-)TEAD protein(-)protein interface. Cancers (Basel) 10:140. https://doi.org/10.3390/cancers10050140
  • Kato-Stankiewicz J, Hakimi I, Zhi G, Zhang J, Serebriiskii I, Guo L, Edamatsu H, Koide H, Menon S, Eckl R, Sakamuri S, Lu Y, Chen QZ, Agarwal S, Baumbach WR, Golemis EA, Tamanoi F, Khazak V (2002) Inhibitors of Ras/Raf-1 interaction identified by two-hybrid screening revert Ras-dependent transformation phenotypes in human cancer cells. Proc Natl Acad Sci USA 99:14398–14403. https://doi.org/10.1073/pnas.222222699
  • Khazak V, Kato-Stankiewicz J, Tamanoi F, Golemis EA (2006) Yeast screens for inhibitors of Ras-Raf interaction and characterization of MCP inhibitors of Ras-Raf interaction. Methods Enzymol 407:612–629. https://doi.org/10.1016/S0076-6879(05)07048-5
  • Holmes B, Lee J, Landon KA, Benavides-Serrato A, Bashir T, Jung ME, Lichtenstein A, Gera J (2016) Mechanistic target of rapamycin (mTOR) inhibition synergizes with reduced internal ribosome entry site (IRES)-mediated translation of cyclin D1 and c-MYC mRNAs to treat glioblastoma. J Biol Chem 291:14146–14159. https://doi.org/10.1074/jbc.M116.726927
  • Strano S, Munarriz E, Rossi M, Castagnoli L, Shaul Y, Sacchi A, Oren M, Sudol M, Cesareni G, Blandino G (2001) Physical interaction with Yes-associated protein enhances p73 transcriptional activity. J Biol Chem 276:15164–15173. https://doi.org/10.1074/jbc.M010484200
  • Ferrigno O, Lallemand F, Verrecchia F, L’Hoste S, Camonis J, Atfi A, Mauviel A (2002) Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling. Oncogene 21:4879–4884. https://doi.org/10.1038/sj.onc.1205623
  • Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) Beta-Catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151:1457–1473. https://doi.org/10.1016/j.cell.2012.11.026
  • Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F, Wang X, Schinzel AC, Sood S, Rosenbluh J, Kim JW, Zwang Y, Roberts TM, Root DE, Jacks T, Hahn WC (2014) KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158:171–184. https://doi.org/10.1016/j.cell.2014.06.004
  • Bashir T, Cloninger C, Artinian N, Anderson L, Bernath A, Holmes B, Benavides-Serrato A, Sabha N, Nishimura RN, Guha A, Gera J (2012) Conditional astroglial Rictor overexpression induces malignant glioma in mice. PLoS One 7:e47741. https://doi.org/10.1371/journal.pone.0047741
  • Thompson BJ (2020) YAP/TAZ: drivers of tumor growth, metastasis, and resistance to therapy. Bioessays 42:e1900162. https://doi.org/10.1002/bies.201900162
  • Artinian N, Cloninger C, Holmes B, Benavides-Serrato A, Bashir T, Gera J (2015) Phosphorylation of the hippo pathway component AMOTL2 by the mTORC2 kinase promotes YAP signaling, resulting in enhanced glioblastoma growth and invasiveness. J Biol Chem 290:19387–19401. https://doi.org/10.1074/jbc.M115.656587
  • Konstantinou EK, Notomi S, Kosmidou C, Brodowska K, Al-Moujahed A, Nicolaou F, Tsoka P, Gragoudas E, Miller JW, Young LH, Vavvas DG (2017) Verteporfin-induced formation of protein cross-linked oligomers and high molecular weight complexes is mediated by light and leads to cell toxicity. Sci Rep 7:46581. https://doi.org/10.1038/srep46581
Show all 42 citations
Loading...